

Aluminum Linear Friction Stir Welded Blanks

Presenters

Michael W. Danyo

Aluminum Structures Technical Specialist Body Structures, Product Development Ford Motor Company

Dawn Stubleski

Account Manager TWB Company, L.L.C.

Beck Oiness Aluminum Technology Engineer Body Structures, Product Development Ford Motor Company

Agenda

- Introduction
- Friction Stir Welding Details and Applications
- Study for Next Generation Truck
- Mechanical Property Data of Friction Stir Welded Aluminum
- Stamping Trials

TWB Company – Over 50 Applications Applied

Tailored Blanks (TB) Tailored Coils (TWC) Hot Formed Tailored Blanks (HFTB)

- Save weight
- Reduce cost
- Improve material utilization
- Consolidate parts

TWB Company – Global Solutions

TWB & WISCO Tailored Blank Groups support the global automotive market

BUILT Ford TOUGH

Friction Stir Welding Process

- FSW is a solid-state welding technique (no metal melting).
- A rotating tool with a specially designed pin and shoulder is inserted into the abutting edges of the sheets to be joined and then traversed along the seam.

- The rotating tool serves three primary functions:
 - 1. Heats the workpiece by friction and plastically deforms the material
 - 2. Moves plasticized material along and across the seam
 - 3. Restricts and contains the metal flow at the tool shoulder position to accomplish a smooth, uniform transition from one sheet to the other

Friction Stir Welding Characteristics

- Fine grained microstructure with excellent mechanical properties
- Smooth transition across seam
- No weld solidification effects (porosity, shrinkage, hot cracking)
- Able to weld through lubricants
- Green technology low energy consumption and no hazardous fumes

BIII

Friction Stir Welding Microstructure

From Aerospace to Automotive – Innovations

First dedicated Aluminum Tailor Welded Blank line in North American

DOE collaboration achieved a significant increase in FSW speeds to make the process viable for high volume automotive manufacturing.

Key Innovations

- Thin sheet welding (0.8mm min)
- High speed (up to 6 m/min)
- Differential thickness welding
- Curvilinear 2D welding
- Joining all 5xxx, 6xxx, and 7xxx alloys
- Joining mixed alloy families
- Joining Magnesium sheet

:111

Tailored Product Benefits

Aluminum TB lowers the \$/kg cost of an aluminum solution and provides further weight savings.

Rear Firewall - 1.2 mm/1.5mm/1.2mm 6014

Door Inner - 2.0mm/1.1mm 5182

	Tailored Product Opportunities		
Benefit	Part Consolidation	Part Optimization	Material Utilization
Weight Savings	\checkmark	\checkmark	
Cost Savings	\checkmark	,	\checkmark
Investment Savings	\checkmark	\checkmark	
Improved Product Performance	\checkmark	\checkmark	
Improved Manufacturing	\checkmark		
Improved Dimensional Control	\checkmark		

Tunnel Reinforcement - 1.25mm/2.0mm/1.5mm 6014

Aluminum Welding – Technology Choice

Monroe, Michigan USA

Friction Stir Welding

- Solid state welding process
- Fine grain microstructure, low distortion, excellent properties
- 2D is available today
- Able to join high Cu alloys
- Sheets welded as received with lube
- Scalable for high volume production

Duisburg, Germany

BUH

Laser Welding

- Fusion welding process with filler material required to replace Mg and fill shrinkage gap
- 2D welding is not available today
- High Cu alloys under development
- Lube removed prior to welding
- Transferable to existing high speed Conti weld lines

Application Study – Underbody Component

An underbody component was studied as a potential application for FSW Aluminum blanks on the next generation Truck.

- 6XXX series aluminum
- Material utilization opportunity
 - Opportunity for cost save
 - Same gage welding

Welded vs Monolithic – 6XXX Aluminum

- Yield Strength equivalent in welded samples as compared to parent metal
- Slight decrease in Ultimate Tensile Strength in welded samples
- Decrease in Elongation in welded samples
- Properties along weld essentially equal to parent metal
- Compares favorably to typical Aluminum GMAW of 6XXX series, which may result in YS and UTS decreases of over 50%

BIII

No distinct heat affected zone (HAZ)

BUIL

Rolling Direction

- Yield Stress and Elongation measured for different rolling directions
 - Longitudinal = L, Transverse = T

BUL

Heat Treatment – T82

- Yield Stress and Elongation measured for different rolling directions
 - Longitudinal = L, Transverse = T

Limited Dome Height

- Punch displacement measured for different rolling directions
 - Longitudinal = L, Transverse = T
- Results predict acceptable formability

Mechanical Joining

- Mechanical joining should be positioned in the parent metal.
- The effects of the joining method should not encroach on the weld affected zone.

Corrosion

- No objectionable surface corrosion observed on uncoated surface near welds
- Welded area passes e-coat adhesion requirements

Stamping – Underbody Component

- Three stamping trials completed for component:
 - Prototype die, 5-piece production tool, and run-at-rate trials
- For each trial, parts were successfully formed
- Run-at-rate trial had splits on some panels which propagated further than previous trials

Stamping – Underbody Component

- Stamping trials demonstrated that position of the weld line in the tool is critical.
- The notched areas at starts and stops of welds, where the tool enters and exits the blank, are stress risers.
- Strain must be minimized at notched areas.
- Run-at-rate trial saw further split propagation.

Panel from Prototype Stamping Trial Panel from Run-at-Rate Stamping Trial

Stamping – Underbody Component

 CAE simulation of stamping showed high strain at notches at end of welds.

- Adding a cut-out to remove the notches (and the stress risers) reduces the probability of splitting.
- Moving the weld to an area without transverse material flow at the notches could also prevent splits.

Summary

- Aluminum Tailor Welded Blanks are feasible for high volume production
- Mechanical properties of the Friction Stir Weld seam are especially beneficial for 6XXX series Aluminum
- Friction Stir Weld seam starts and stops should be kept in low strain or removed for stamping
- Additional plant trials planned for 2nd quarter 2017

Acknowledgements

Arconic

Misha Pesic Don Strugala

Brigham Young University

Yuri Hovanski

Ford

- Jo Ann Clarke Amanda Freis
- Dennis Frerich Kevin Haddix
- Josh Hemphill Elizabeth Hetrick
- Kim Lazarz George Luckey
- Rosa Nuno Chris Perniciaro

TWB

Brian DixMark EisenmengerTom LuzanskiDustin Marshall